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Abstract
A superlattice composed of materials exhibiting spontaneous electrical
polarization has strong electric fields in both wells and barriers. Electrons
in the wells are confined in deep triangular potentials whereas polar-optical
phonons are confined in square wells. The electron–phonon interaction
therefore presents novel features, and these are explored here in the system
Al1−xInxN/GaN assumed to be lattice-matched. The dielectric-continuum
model is used to calculate bulk alloy and interface mode properties, and
threshold scattering rates are estimated. The reduced role of phonon symmetry
is pointed out.

1. Introduction

Spontaneous polarization in nitride structures gives rise to large static electric fields that confine
electrons in approximately triangular quantum wells. On the other hand optical phonons in a
nitride superlattice have the usual confinement and interface properties of a square quantum
well. The electron–phonon interaction in a situation where the quantum confinements of
electrons and phonons are different spatially has not received much attention hitherto. In this
paper we address the problem of describing the scattering of electrons confined in a triangular
quantum well by their interaction with polar-optical phonons confined in a square quantum
well.

As an example of a polarization superlattice we consider the system Al1−x InxN/GaN for
the lattice-matched condition x ≈ 0.17. The polarization then arises purely from spontaneous
polarization, with no piezoelectric component. The calculation then proceeds as follows.
A periodic electric-field profile is established for the superlattice using estimates of the
spontaneous polarization in the AlInN barrier and in the GaN well. Airy function solutions
for the triangular well are then used to define the subband energies, and Fang–Howard
wavefunctions are used to approximate the Airy functions and to provide phonon overlap
integrals. The allowed optical-phonon frequencies in the alloy and in the binary are established
using standard dielectric-continuum (DC) theory. Explicit scattering rates are obtained for the
intra-subband transition from the phonon-energy threshold and from the bottom of the second
subband in a 100 Å well. A comparison is made with the results that arise from the assumption

0953-8984/02/133469+10$30.00 © 2002 IOP Publishing Ltd Printed in the UK 3469

http://stacks.iop.org/cm/14/3469


3470 B K Ridley

b a

+σb −σa

+σa −σb

Fb

Fa

Figure 1. A polarization superlattice.

that the phonons are bulk-like. Finally, a better approximation to the ground-state Airy function
is given and the results are compared with those using Fang–Howard wavefunctions.

2. The polarization superlattice

A polarization superlattice is depicted in figure 1. Periodicity implies that

εbFb − εaFa = σa − σb − bFb − aFa = 0 (1)

where εa,b are the permittivities of the well and barrier materials, Fa,b are the electric fields,
σa,b are the spontaneous polarizations with σ b > σ a and a, b the dimensions of the well
and barrier, respectively. The equations follow from Gauss’s theorem and the condition of
zero-voltage drop across a superlattice element. It is assumed that the electron population
in the well is insignificant, implying the existence of appropriate boundary conditions at the
superlattice extremes. Solving equation (1) for the field in the well gives

Fa = σb − σa

εa

(
1 + εba

εab

) . (2)

3. Electrons

Taking the discontinuity of the conduction-band edge to be about 66% of the difference of
energy gaps between Al0.83In0.17N and GaN leads to Ec ≈ 1.4 eV. This is large enough for
us to assume that any penetration of the electron wavefunction into the barrier is negligible.
Strictly, the solution for the wavefunction will be a linear combination of the independent
solutions of the Airy equation that matches a similar solution in the barriers, but given the
large band-edge discontinuity and limiting attention to wide wells (given the large polarization
fields this means limiting attention to well widths greater than 50 Å) the wavefunction can be
taken to a sufficient approximation to be a simple Airy function.

The subband energies in the triangular well are then taken to be adequately expressed by

En =
(

h̄2

2m∗

)1/3 (
3πeF

2

(
n +

3

4

))2/3

(3)
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with the solution of the Schrödinger equation given by the Airy function

�n(z) = Ai

((
2m∗

h̄2e2F 2

)1/3

(eFz − En)

)
. (4)

When extreme accuracy is not required it is analytically convenient to replace the Airy function
with simpler expressions. We will use the Fang–Howard formulae [1, 2]

�1(z) =
(

b3

2

)1/2

ze−bz/2 �2(z) =
(

3b3

2

)1/2

z

(
1 − bz

3

)
e−bz/2. (5)

and choose b (not to be confused with barrier width) to give the correct energy for E1. This
fomulation, which emphasizes the properties of the triangular well, will be valid only for
sufficiently wide wells. We also assume that the communication between wells is negligible,
which is equivalent to assuming that the superlattice is a series of single quantum wells. This
will be true provided, once again, that the well width is not too small.

4. Phonons

The two-mode character of the alloy is quantified using the assumption that the dielectric
function can be expressed as the sum of the polarizabilities of the two binaries AlN and InN
[3] as was done for AlGaN [4]. These alloy modes have frequencies that lie in the vicinity
of the LO and TO frequencies of GaN, which might suggest that they may propagate through
the superlattice. However, the discrepancy in the mass factors of the alloy and GaN is the
crucial factor [5] and in fact the alloy modes will be substantially confined to the alloy. We
are assuming that the discontinuity in the conduction-band edges is large enough to make any
electron penetration negligible and so we can forget about the role of bulk alloy modes with
regard to scattering.

But we cannot forget about the associated interface modes. All told there will be three
such modes and each will contribute to the scattering. Strictly speaking, there will be modes
of mixed character, interface and bulk. This hybridization is required in order to satisfy both
electromagnetic and mechanical boundary conditions [6, 7], neglect of which gives rise to
wrong mode patterns as revealed by Raman scattering. However, as far as overall scattering
rates are concerned it turns out that the set of modes obtained if the mechanical boundary
conditions are ignored, i.e. using the DC model, describes the scattering rate adequately
[8]. Because of the comparative simplicity of the DC model we will use it to calculate
scattering rates. Satisfying the electrical boundary conditions at each interface, but ignoring
the mechanical boundary conditions, leads to the dispersion relation for interface modes [9]:

cos kz(a + b) − 1 + r2

2r
sinh qa sinh qb − cosh qa cosh qb = 0 (6)

where kz (0 � kz(a + b) � π) is the wave vector along the superlattice axis, q is the in-plane
wave vector and r = εa(ω)/εb(ω). Here

εb(ω) = ε∞b

(
ω2 − ω2

+

) (
ω2 − ω2

−
)

(
ω2 − ω2

T 1

) (
ω2 − ω2

T 2

) εa(ω) = ε∞a

(
ω2 − ω2

La

)
(
ω2 − ω2

T a

) (7)

where ε∞b is the high-frequency permittivity of the alloy virtual crystal, ε∞a is the same
for the well material, ω± are the angular frequencies of the alloy modes, ωT 1,T 2 are the TO
frequencies of the binaries in the alloy and ωLa,T a are the LO and TO frequencies of the well
material. Equations (6) and (7) predict three interface bands.
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Figure 2. Bulk alloy mode frequencies (solid lines). Interface mode frequencies (dashed lines)
according to equation (8).

Table 1. Parameters of alloys.

AlN InN GaN

h̄ωT (meV) 74.3 65.9 70.7
h̄ωL (meV) 99.2 89.0 91.2
ε/ε0 4.77 8.4 5.35
εs/ε0 8.5 15.3 8.9
Psp (cm−2) −0.081 −0.032 −0.029

The general situation is quite complicated since the mode patterns for a given interface
band in the well depend upon the superlattice wave vector and are only simply symmetric or
antisymmetric for kz(a + b) = 0 or π . However, the situation simplifies considerably when
qa, qb and q(a − b) (or q(b − a)) are large enough, a condition that is easily satisfied in the
nitride systems as a consequence of the large phonon energies (leading to large q) for wells
and barriers that are not too thin.

When this is the case the dispersion relation reduces to

εa(ω) + εb(ω) = 1 (8)

and the mode patterns can be shown to be independent of the superlattice wave vector, being
either sinh-like or cosh-like. The frequencies of the two modes in the alloy and of the interface
modes are shown in figure 2. The parameters used are those in the table 1.

The DC theory also gives the Fröhlich coupling strengths of the modes. The ones of
interest are, of course, the interface modes and the confined well modes since these are
the only modes that interact with electrons in the triangular well. (As mentioned earlier, it
is assumed that the electron wavefunction does not penetrate the barrier.) Of the interface
modes only the highest-frequency one has non-negligible coupling strength. The others, being
more TO-like, have small coupling strengths and their influence can be neglected. Explicit
expressions in terms of the rate W 0, where

W0 = e2

4πh̄

(
2m∗ω

h̄

)1/2 1

ε∗ (9)
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are for the confined well modes
1

ε∗ = 1

ε∞a

− 1

εsa

(10)

where εsa is the static permittivity; and for the interface modes

1

ε∗ = 1

βa + βb

βa = ε∞aω
2 ω2

La − ω2
T a

ω2 − ω2
T a

βb = ε∞bω
2 X1b

(
ω2 − ω2

T 2

)
+ X2b

(
ω2 − ω2

T 1

)
(
ω2 − ω2

T 1

)2 (
ω2 − ω2

T 2

)2 (11)

X1b =
(
ω2

+ − ω2
T 1

) (
ω2

+ − ω2
T 2

)
(
ω2

+ − ω2−
)

X2b =
(
ω2

− − ω2
T 1

) (
ω2

− − ω2
T 2

)
(
ω2− − ω2

+

) .

5. Scattering rates

Scattering rates are computed for two special cases, namely, intra-subband scattering from an
energy equal to the phonon energy, and inter-subband scattering from the bottom of the second
subband into the first. We refer to these as threshold rates. The threshold scattering rate from
subband i to subband j for a given mode is given by

Wij = W02π2

(
h̄ω

E0

)1/2 |Gij |2
(Qa)2

. (12)

Here W0 is the rate defined in equation (9), E0 = h̄2π2/2m∗a2, Gij is the overlap integral and
Q is a normalizing factor. The confined well modes have envelope functions for their scalar
potential given by sin(nπz/a), where n = 1, 2, 3, etc and

Gij =
∫ ∞

0
ψj sin(nπz/a)ψi dz Qa =

√
(q2a2 + (nπ)2). (13)

The active interface mode has a symmetric profile—cosh(q(z−a/2))—and an antisymmetric
profile—sinh(q(z − a/2)), so

Gij =
∫ ∞

0
ψj

{
cosh(q(z − a/ 2))

sinh(q(z − a/ 2))
ψi dz (Qa)2 = 4qa

{
cosh2(qa/ 2)

sinh2(qa/ 2).
(14)

The expression for Qa is the normalizing factor assuming that the interface modes are
essentially barrier modes. In these expressions q is the in-plane phonon wave vector satisfying
momentum conservation. The general expressions for the overlap integrals are given in the
appendix.

The in-plane wave vector q is determined in the first case by the phonon energy and in
the second case by the subband separation, assumed to be greater than the phonon energy.
The parameters are shown in table 1. The composition dependence of the alloy was taken to
be linearly dependent on x and bowing parameters were ignored. The electron effective mass
was taken to be 0.2 m0.

Figure 3 shows the form factors |Gij |2/Q2 for the first eight GaN confined LO modes
in a 100 Å well containing an electron-confining triangular well in the Al0.83In0.17N/GaN
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Figure 3. Form factors for the first eight confined GaN modes at emission threshold: (a) intra-
subband and (b) inter-subband.

superlattice in which ba = 0.18 and the inter-subband separation was taken to be 0.31 eV
(barrier width 50 Å). In the conventional case, where the electron is confined in the same
square well as the phonons, symmetry would rule out contributions from even number
(antisymmetrical) modes for the intra-subband transition and odd number (symmetrical) modes
for the inter-subband transition with, in both cases, emphasis on the lowest-order mode. In the
case of the triangular well symmetry does not play such a large role and higher-order modes
contribute relatively more. The smaller part that symmetry has to play is also shown for
interface modes (figure 4). Only when ba is relatively small, so that the electron wavefunction
is more evenly spread across the square well, does symmetry matter.

Adding the contributions from the confined modes and from both the symmetric and
antisymmetric interface modes we obtain for the intra-subband threshold emission rate 9.07×
1013 s−1 and for the inter-subband 1.32 × 1013 s−1. It is interesting to compare these results
with those obtained by assuming that the phonon modes are GaN bulk unconfined modes. The
rates of scattering by bulk modes are, respectively, 1.04 × 1014 s−1 and 1.58 × 1013 s−1.
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Figure 4. Form factors for the active interface mode at emission threshold: (a) intra-subband and
(b) inter-subband.

6. Discussion

The similarity of these rates obtained from confined and unconfined well modes is a common
result. It is associated with an approximate sum-rule affecting any complete set of modes
[10–12]. The sum-rule would be precise were the Fröhlich coupling strength to be the
same for every mode. For confined and bulk modes the coupling strength is dependent on
frequency and, therefore, given the weak dispersion of long-wavelength optical modes, it is
nearly the same for each mode. In the system considered, the interface modes have closely
similar coupling strengths, so the condition is fulfilled for the sum-rule to work to a good
approximation. This has allowed us, for simplicity, to follow standard usage and to use the
DC model (which neglects mechanical boundary conditions) to obtain the scattering rates.

For simplicity we have assumed that the subband energies of the electrons and their
wavefunctions are those of a pure triangular well. The use of this assumption produces a
tension when the triangular well is situated in a finite-width layer since the exponential tail of
the wavefunction cannot stretch to infinity as assumed by the use of Airy functions and the
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Figure 5. Comparison of wavefunction models: (a) ground state and (b) first excited state.

Fang–Howard approximations to them. However, this does not introduce major inaccuracies
provided that the well is wide enough. The width of 100 Å chosen here satisfies this condition
extremely well.

Given the adequacy of triangular-well wavefunctions it is pertinent to consider more
accurate models than those of Fang and Howard to replace the Airy functions in order to
allow relatively simple analytic results to be obtained. A better fit, at least to the ground-state
wavefunction, is obtained by using the following:

ψ1(z) =
(

b5

24

)1/2

z2 e−bz/2 ψ1(z) =
(

b5

24

)1/2

z2

(
1 − bz

5

)
e−bz/2. (15)

Figure 5 shows a comparison of this new model and the Fang–Howard model with Airy
functions.

The form factors for the new model in the case of bulk modes are given in the appendix.
The rates using the new model and relying on the sum-rule (i.e. using bulk modes) are
1.17 × 1014 s−1 and 1.58 × 1013 s−1 which may be compared to 1.04 × 1014 s−1 and 1.58 ×
1013 s−1 obtained with Fang–Howard wavefunctions. This would indicate that the rates are not
very sensitive to the difference between Fang–Howard wavefunctions and Airy wavefunctions.
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Appendix. Overlap integrals

1. Confined modes

Gij =
∫ a

0
ψiψj sin(nπz/a) dz. (A.1)

Inserting Fang–Howard wavefunctions gives

G11(n) = (ba)3nπ

2

[
2{3(ba)2 − (nπ)2}
{(ba)2 + (nπ)2}3

− e−baf11(b, n)

]
(A.2)

G12(n) = (ba)3nπ
√

3

2

[
2{−(ba)4 + 6(banπ)2 − (nπ)4}

3{(ba)2 + (nπ)2}4
− e−baf12(b, n)

]
.

The term involving the exponential in each of the expressions contributes little and in the spirit
of our approximations can be ignored.

2. Interface modes

Gij (q) =
∫ a

0
ψiψj

{
cosh{q(z − a/ 2)}

dz
sinh{q(z − a/ 2)

(A.3)

G11(q) = (ba)3

2

[
P11 + Q11 − e−baf11(b, q)

]
P11 = 2ba{(ba)2 + 3(qa)2}

{(ba)2 − (qa)2}3

{
+ cosh(qa/ 2)

− sinh(qa/ 2)
(A.4)

Q11 = 2qa{3(ba)2 − (qa)2}
{(ba)2 − (qa)2}3

{− sinh(qa/ 2)

+ cosh(qa/ 2)

where the upper function refers to the symmetric and the lower to the antisymmetric interface
mode. In this case the term involving the exponential cannot be neglected since it contains
hyperbolic functions. Thus,

f11(q) = R11

{
cosh(qa/ 2)

sinh(qa/ 2)
+ S11

{
sinh(qa/ 2)

cosh(qa/ 2)

R11 = ba

(ba)2 − (qa)2
+

2{(ba)2 + (qa)2}
{(ba)2 − (qa)2}2

+
2ba{(ba)2 + 3(qa)2}

{(ba)2 − (qa)2}3
(A.5)

S11 = qa

(
1

(ba)2 − (qa)2
+

4ba

{(ba)2 − (qa)2}2
+

2{3(ba)2 + (qa)2}
{(ba)2 − (qa)2}3

)
.

For the inter-subband transition

G12(q) = (ba)3
√

3

2

(
P12 + Q12 − e−baf12(q)

)
P12 = −8ba(qa)2{(ba)2 + (qa)2}

{(ba)2 − (qa)2}4

{
cosh(qa/ 2)

− sinh(qa/ 2)
(A.6)

Q12 = −2qa{(qa)4 + 6(ba)2(qa)2 + (ba)4}
{(ba)2 − (qa)2}4

{− sinh(qa/ 2)

cosh(qa/ 2)
.
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Once again the exponential term must be retained:

f12(q) =
(

R11 − ba

3
R12

){
cosh(qa/ 2)

sinh(qa/ 2)
+

(
S11 − ba

3
S12

){
sinh(qa/ 2)

cosh(qa/ 2)

R12 = ba

(ba)2 − (qa)2
+

3{(ba)2 + (qa)2}
{(ba)2 − (qa)2}2

+
6ba{(ba)2 + 3(qa)2}

{(ba)2 − (qa)2}3

+
6((ba)4 + 6(ba)2(qa)2 + (qa)4)

{(ba)2 − (qa)2}4
(A.7)

S12 = qa

(
1

(ba)2 − (qa)2
+

6ba

{(ba)2 − (qa)2}2
+

6{3(ba)2 + (qa)2}
{(ba)2 − (qa)2}3

+
24ba{(ba)2 + (qa)2}

{(ba)2 − (qa)2}4

)
.

3. Bulk modes

For the sake of completeness we give the well-known form factors for the Fang–Howard
wavefunctions

F11(q) = b

8(q + b)3
(8b2 + 9bq + 3q2) F12(q) = 3bq

16(q + b)4
(5b2 + 4bq + q2). (A.8)

The form factors for our model wavefunctions

ψ1(z) =
(

b5

24

)1/2

z2 e−bz/2 ψ2(z) =
(

5b5

24

)
z2

(
1 − bz

5

)
e−bz/2 (A.9)

are

F11(q) = b

128(b + q)5
(128b4 + 325b3q + 345b2q2 + 175bq3 + 35q4)

(A.10)
F12(q) = 5bq

256(b + q)6
(63b4 + 122b3q + 102b2q2 + 42bq3 + 7q4).
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